Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks

نویسندگان

  • Vinay Chandwani
  • Vinay Agrawal
  • Ravindra Nagar
چکیده

The paper explores the usefulness of hybridizing two distinct nature inspired computational intelligence techniques viz., Artificial Neural Networks (ANN) and Genetic Algorithms (GA) for modeling slump of Ready Mix Concrete (RMC) based on its design mix constituents viz., cement, fly ash, sand, coarse aggregates, admixture and water-binder ratio. The methodology utilizes the universal function approximation ability of ANN for imbibing the subtle relationships between the input and output variables and the stochastic search ability of GA for evolving the initial optimal weights and biases of the ANN to minimize the probability of neural network getting trapped at local minima and slowly converging to global optimum. The performance of hybrid model (ANN-GA) was compared with commonly used back-propagation neural network (BPNN) using six different statistical parameters. The study showed that by hybridizing ANN with GA, the convergence speed of ANN and its accuracy of prediction can be improved. The trained hybrid model can be used for predicting slump of concrete for a given concrete design mix in quick time without performing multiple trials with different design mix proportions. 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Analysis of Concrete Slump Using Hybrid Artificial Neural Networks

Artificial Neural Networks (ANN) trained using backpropagation (BP) algorithm are commonly used for modeling material behavior associated with non-linear, complex or unknown interactions among the material constituents. Despite multidisciplinary applications of back-propagation neural networks (BPNN), the BP algorithm possesses the inherent drawback of getting trapped in local minima and slowly...

متن کامل

Prediction of mechanical and fresh properties of self-consolidating concrete (SCC) using multi-objective genetic algorithm (MOGA)

Compressive strength and concrete slump are the most important required parameters for design, depending on many factors such as concrete mix design, concrete material, experimental cases, tester skills, experimental errors etc. Since many of these factors are unknown, and no specific and relatively accurate formulation can be found for strength and slump, therefore, the concrete properties ca...

متن کامل

Prediction of Slump in Concrete using Artificial Neural Networks

High Strength Concrete (HSC) is defined as concrete that meets special combination of performance and uniformity requirements that cannot be achieved routinely using conventional constituents and normal mixing, placing, and curing procedures. It is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed to show possible applicability of Neural Networ...

متن کامل

V. Agrawal and A. Sharma _paper_

High Strength Concrete (HSC) is defined as concrete that meets special combination of performance and uniformity requirements that cannot be achieved routinely using conventional constituents and normal mixing, placing, and curing procedures. It is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed to show possible applicability of Neural Networ...

متن کامل

Yarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms

Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2015